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In recent years there has been a significant growth of investment products aimed at attracting
investors who are worried about the downside potential of the financial markets. This paper
introduces a dynamic stochastic optimization model for the design of such products. The
pricing of minimum guarantees as well as the valuation of a portfolio of bonds based on a
three-factor term structure model are described in detail. This allows us to accurately price
individual bonds, including the zero-coupon bonds used to provide risk management, rather
than having to rely on a generalized bond index model.
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1. Introduction

In recent years there has been a significant growth of
investment products aimed at attracting investors who
are worried about the downside potential of the financial
markets for pension investments. The main feature of
these products is a minimum guaranteed return together
with exposure to the upside movements of the market.

There are several different guarantees available in the
market. The most common one is the nominal guarantee
which guarantees a fixed percentage of the initial invest-
ment. However there also exist funds with a guarantee in
real terms which is linked to an inflation index. Another
distinction can be made between fixed and flexible guar-
antees, with the fixed guarantee linked to a particular rate
and the flexible to, for instance, a capital market index.
Real guarantees are a special case of flexible guarantees.
Sometimes the guarantee of a minimum rate of return is
even set relative to the performance of other pension
funds.

Return guarantees typically involve hedging or insur-
ing. Hedging involves eliminating the risk by sacrificing
some or all of the potential for gain, whereas insuring
involves paying an insurance premium to eliminate the
risk of losing a large amount.
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Many government and private pension schemes consist
of defined benefit plans. The task of the pension fund is to
guarantee benefit payments to retiring clients by investing
part of their current wealth in the financial markets.
The responsibility of the pension fund is to hedge the
client’s risk, while meeting the solvency requirements in
such a way that all benefit payments are met. However
at present there are significant gaps between fund
values, contributions made by employees and pension
obligations to retirees.

One way in which the guarantee can be achieved is by
investing in zero-coupon Treasury bonds with a maturity
equal to the time horizon of the investment product in
question. However using this option foregoes all upside
potential. Even though the aim is protect the investor
from the downside, a reasonable expectation of returns
higher than guaranteed needs to remain.

In this paper we will consider long-term nominal
minimum guaranteed return plans with a fixed time
horizon. They will be closed end guarantee funds; after
the initial contribution there is no possibility of making
any contributions during the lifetime of the product.
The main focus will be on how to optimally hedge the
risks involved in order to avoid having to buy costly
insurance.

However, this task is not straightforward, as it
requires long-term forecasting for all investment classes
and dealing with a stochastic liability. Dynamic stochastic
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programming 1is the technique of choice to solve this
kind of problem as such a model will automatically
hedge current portfolio allocations against the future
uncertainties in asset returns and liabilities over a long
horizon (see e.g. Consigli and Dempster 1998, Dempster
et al. 2000, 2003). This will lead to more robust decisions
and previews of possible future benefits and problems
contrary to, for instance, static portfolio optimization
models such as the Markowitz (1959) mean-variance
allocation model.

Consiglio ef al. (2007) have studied fund guarantees
over single investment periods and Hertzog et al. (2007)
treat dynamic problems with a deterministic risk barrier.
However, a practical method should have the flexibility
to take into account multiple time periods, portfolio
constraints such as prohibition of short selling and
varying degrees of risk aversion. In addition, it should
be based on a realistic representation of the dynamics of
the relevant factors such as asset prices or returns
and should model the changing market dynamics of risk
management. All these factors have been carefully
addressed here and are explained further in the sequel.

The rest of the paper is organized as follows.
In section 2 we describe the stochastic optimization
framework, which includes the problem set up, model
constraints and possible objective functions. Section 3
presents a three-factor term structure model and its
application to pricing the bond portfolio and the liability
side of the fund on individual scenarios. As our portfolio
will mainly consist of bonds, this area has been
extensively researched. Section 4 presents several
historical backtests to show how the framework would
have performed had it been implemented in practice,
paying particular attention to the effects of using differ-
ent objective functions and varying tree structures.
Section 5 repeats the backtest when the stock index is
modelled as a jumping diffusion so that the correspond-
ing returns exhibit fat tails and section 6 concludes.
Throughout this paper boldface is used to denote ran-
dom entities.

2. Stochastic optimization framework

In this section we describe the framework for optimizing
minimum guaranteed return funds using stochastic
optimization. We will focus on risk management as well
as strategic asset allocation concerned with allocation

Stages:

s=1

across broad asset classes, although we will allow specific
maturity bond allocations.

2.1. Set up

This paper looks at several methods to optimally allocate
assets for a minimum guaranteed return fund using
expected average and expected maximum shortfall risk
measures relative to the current value of the guarantee.
The models will be applied to eight different assets:
coupon bonds with maturity equal to 1, 2, 3, 4, 5, 10
and 30 years and an equity index, and the home currency
is the euro. Extensions incorporated into these models are
the presence of coupon rates directly dependent on the
term structure of bond returns and the annual rolling of
the coupon-bearing bonds.

We consider a discrete time and space setting. The time
interval considered is given by {0,(1/12),(2/12),..., T},
where the times indexed by t =0, 1,..., T — 1 correspond
to decision times at which the fund will trade and 7 to
the planning horizon at which no decision is made
(see figure 1). We will be looking at a five-year horizon.

Uncertainty € is represented by a scemnario tree,
in which each path through the tree corresponds to a
scenario @ in Q and each node in the tree corresponds
to a time along one or more scenarios. An example sce-
nario tree is given in figure 2. The probability p(w) of
scenario w in 2 is the reciprocal of the total number of
scenarios as the scenarios are generated by Monte Carlo
simulation and are hence equiprobable.

The stock price process S is assumed to follow a
geometric Brownian motion, i.e.

% = psdt + ogdWy, (1)
t
where dW? is correlated with the dW, terms driving the
three term structure factors discussed in section 3.

2.2. Model constraints

Let (see table 1)

e /i, (w) denote the shortfall at time ¢ and scenario w, i.e.

h(w) :=max(0,L,(w) — W,(w)) VYweQ teT % (2)

o H(w):=max,.;oa h(w) denote the maximum

shortfall over time for scenario w.

t=0 t=1/12 t=2/12 t=3/12 t=4/12 t=5/12 t=1/2

Time

t=7/12 t=8/12 t=9/12 t=10/12 t=11/12 t=1

v

t=13/12 t=14/12 t=15/12

Figure 1. Time and stage setting.
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Figure 2. Graphical representation of scenarios.

Table 1. Variables and parameters of the model.

Timel sets

total 1

To% = {0,5....}
T°=1{0,1,...—1}
Ti _ Ttotal\Td
= {53
Instruments

Si(@)

B/ ()

57 ()

P

Z(w)

Risk management barrier
Vi r(w)

G
LY (o)

Portfolio evolution
A

P (@) P(@)
Jg

X t,a(w)

X (@) /X7 (@)

Wy

Wi(w)

wi(w)

h(@) := max(0, L(w) — W (w))

Set of all times considered in the stochastic program

Set of decision times

Set of intermediate times

Times when a coupon is paid out in-between decision times

Dow Jones Eurostoxx 50 index level at time ¢ in scenario @
EU Treasury bond with maturity T at time ¢ in scenario w

coupon rate of EU Treasury bond with maturity 7" at time
¢ in scenario

face value of EU Treasury bond with maturity T

EU zero-coupon Treasury bond price at time ¢ in scenario w

EU zero-coupon Treasury yield with maturity 7" at time ¢
in scenario w

Annual guaranteed return

Nominal barrier at time ¢ in scenario w

Set of all assets

Buy/sell price of asset a € A at time ¢ in scenario @

Transaction costs for buying/selling

Quantity held of asset a € A between time ¢ and 7+ 1/12
in scenario

Quantity bought/sold of asset a € A at time ¢ in scenario

Initial portfolio wealth

Portfolio wealth before rebalancing at time ¢ € T in scenario w

Portfolio wealth after rebalancing at time t€ T U T\{T}
in scenario w

Shortfall at time ¢ in scenario w

The constraints considered for the minimum guaranteed
return problem are:
o Cash balance  constraints. These constraints
ensure that the net cash flow at each time and at
each scenario is equal to zero

Y P @)xG () = Wy, we R (3)

acA
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acA\{S} acA
=Y [Py (), weQ teT\{0}. 4

acA

In (4) the left-hand side represents the cash freed up
to be reinvested at time ¢ € T‘l\{O} and consists of two
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distinct components. The first term represents the
semi-annual coupons received on the coupon-bearing
Treasury bonds held between time ¢/ — 1 and ¢, the second
term represents the cash obtained from selling part of the
portfolio. This must equal the value of the new assets
bought given by the right-hand side of (4).

o Short sale constraints. In our model we assume no
short selling of any stocks or bonds

Yo >0, acd, weQ, teT"°%,
(5)
Xf(w) =0, Yacd, VYoeQ VieT“\(T},
(6)
Xio@) >0, Yaed, YoeQ, VieT°\{0}.
(7

o Information constraints. These constraints ensure
that the portfolio allocation can not be changed
during the period from one decision time to
the next and hence that no decisions with perfect
foresight can be made

acd weQ te T\T".
3
e Wealth constraint. These constraints determine the

portfolio wealth at each point in time prior to and
after rebalancing

x?,_a(w) = x:a(w) = 0:

W)=Y Pl (@x, (o), weQ teTO“\(T},

acA
©)
W(w)= Z P?,ecll(w)xtf(l/u),a(w)a
aeA
weQ reTN\(0),
(10)
wi(@) =Y gPFu(@)X1_(1/12).4(®)
acA
] a a
+ Z 3 T-1(@)F X7_(1/12) (@), ®w€Q.
acAN(S)
(11)

o Accounting balance constraints. These constraints
give the quantity invested in each asset at each
time and for each scenario

X, o(@) = x§ (@), ac€ A weQ, (12)
Xra(@) = %, 1 (@) + X[ (@) = X 4(),
a€dweQ, te TMN(0). (13)

The total quantity invested in asset « € 4 between
time ¢ and 7+ (1/12) is equal to the total quantity
invested in asset @« € 4 between time 7 — (1/12) and
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¢t plus the quantity of asset a € 4 bought at time
¢t minus the quantity of asset a € 4 sold at time ¢.

o Annual rolling constraint. This constraint ensures
that at each decision time all the coupon-bearing
Treasury bond holdings are sold

Xia(@) = Xi_(1/12), o(®),

ae A\(S), weQ, te TN\{0}. (14)

o Coupon re-investment constraints. We assume that
the coupon paid every six months will be re-invested
in the same coupon-bearing Treasury bond

(1/2)81(0)F“x,_(1/12), o(®)
TP ()

Xis(@) = x;5(@) = 0,

x;fa(w) = 5 X;a((l)) = Oa

ac A\(S}, weQ, teT". (15)

e Barrier constraints. These constraints determine
the shortfall of the portfolio at each time and sce-
nario as defined in table 1

w e Q’ te Ttotal’

h(@) + W) = L(w), (16)

h(w)>0, weQ, te T (17)

As the objective of the stochastic program will put a
penalty on any shortfall, optimizing will ensure that /,(w)
will be zero if possible and as small as possible otherwise,
ie.

h,(w) =max(0, L,(w) — W,(w)), YoeQ, Vie T, (18)
which is exactly how we defined /,(w) in (2).

To obtain the maximum shortfall for each scenario,
we need to add one of the following two sets of
constraints:

Yo e Q, Vt e TdU{T},

H(w) = hy(w), (19)

H(w) > h(w), Yo e Q, Vie T, (20)
Constraint (19) needs to be added if the max shortfall is to
be taken into account on a yearly basis and constraint

(20) if max shortfall is calculated on a monthly basis.

2.3. Objective functions: expected average shortfall and
expected maximum shortfall

Starting with an initial wealth W, and an annual nominal
guarantee of G, the liability at the planning horizon at
time T is given by

Wo(l +G)T. (21)
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To price the liability at time ¢ < 7 consider a zero-
coupon Treasury bond which pays 1 at time T, i.e.
Zp(w) =1, for all scenarios we Q. The zero-coupon
Treasury bond price at time ¢ in scenario @ assuming con-
tinuous compounding is given by

Z(w) = e Y@= (22)

where y,r(w) is the zero-coupon Treasury yield with
maturity 7" at time ¢ in scenario w.

This gives a formula for the value of the nominal
(fixed) guarantee barrier at time t in scenario w as

LY (@):=W(1+G) Z ()= Wy(1+G) e rr@T=0 (23)

In a minimum guaranteed return fund the objective of
the fund manager is twofold; firstly to manage the invest-
ment strategies of the fund and secondly to take into
account the guarantees given to all investors.
Investment strategies must ensure that the guarantee for

In this case we maximize the expected sum of wealth over
time while penalizing each time the wealth falls below the
barrier. For each scenario we Q2 we can calculate the
average shortfall over time and then take expectations
over all scenarios.

In this case only shortfalls at decision times are
taken into account and any serious loss in portfolio
wealth in-between decision times is ignored. However,
from the fund manager’s and guarantor’s perspective
the position of the portfolio wealth relative to the fund’s
barrier is significant on a continuous basis and serious
or repeated drops below this barrier might force the
purchase of expensive insurance. To capture this feature
specific to minimum guaranteed return funds, we also
consider an objective function in which the shortfall of
the portfolio is considered on a monthly basis.

For the expected average shortfall with monthly
checking (EAS MC) model the objective function is
given by

h(w)
w0\ T 3w -5 T 3 R 20
{x,.(xw),x,_(,(w), x,_a@):} = 1eT90(T) o (e | I
acd, weQ, 1€ TU{T)

all participants of the fund is met with a high probability.

In practice the guarantor (the parent bank of the
fund manager) will ensure the investor guarantee is
met by forcing the purchase of the zero coupon bond
of (22) when the fund is sufficiently near the barrier
defined by (23). Since all upside potential to investors is
thus foregone, the aim of the fund manager is to fall
below the barrier with acceptably small if not zero
probability.

Ideally we would add a constraint limiting the
probability of falling below the barrier in a VaR-type
minimum guarantee constraint, i.c.

P< max h(w) > o) (24)

te Ttotal

for o small. However, such scenario-based probabilistic
constraints are extremely difficult to implement, as they
may without further assumptions convert the convex
large-scale optimization problem into a non-convex
one. We therefore use the following two convex
approximations in which we trade off the risk of falling
below the barrier against the return in the form of the
expected sum of wealth.

Firstly, we look at the expected average shortfall (EAS)
model in which the objective function is given by

max > > p(a))((l—ﬂ)W(w)

Xt,a(@), X[ (@), Xp (@) weR 1eTIU(T
acd, weQ, 1eTU{T}

= max
X1 a(@), X7 (@), X7 o(): =
aeA, weQ, 1T U{T})
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1eTIU{T} weR (eTIU{T

Note that although we still only rebalance once a year
shortfall is now being measured on a monthly basis in
the objective and hence the annual decisions must also
take into account the possible effects they will have on
the monthly shortfall.

The value of 0 < 8 <1 can be chosen freely and sets
the level of risk aversion. The higher the value of 8, the
higher the importance given to shortfall and the less to the
expected sum of wealth, and hence the more risk-averse
the optimal portfolio allocation will be. The two extreme
cases are represented by B =0, corresponding to
the ‘unconstrained’ situation, which is indifferent to the
probability of falling below the barrier, and B =1,
corresponding to the situation in which the shortfall is
penalized and the expected sum of wealth ignored.

In general short horizon funds are likely to attract
more risk-averse participants than long horizon funds,
whose participants can afford to tolerate more risk
in the short run. This natural division between
short and long-horizon funds 1is automatically
incorporated in the problem set up, as the barrier
will initially be lower for long-term funds than for
short-term funds as exhibited in figure 3. However,
the importance of closeness to the barrier can be adjusted
by the choice of g in the objective.

hy(w) >
|IT7U(T}|

BlD p@ >

hy(w)

IT"U{T}I *
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Figure 3. Barrier for one-year and five-year 2% guaranteed
return fund.

The second model we consider is the expected maximum
shortfall (EMS) model given by

max
Xi, o), xra(w)ﬂ XZ(/(w): we
acA, wef, teTU(T}

using the constraints (19) to define H(w).

For the expected maximum shortfall with monthly
checking (EMS MC) model the objective function remains
the same but H(w) is now defined by (20).

In both variants of this model we penalize the expected
maximum shortfall, which ensures that H(w) is as small as
possible for each scenario we Q. Combining this with
constraints (19)/(20) it follows that H(w) is exactly
equal to the maximum shortfall.

The constraints given in section 2.2 apply to both
the expected average shortfall and expected maximum
shortfall models.

The EAS model incurs a penalty every time portfolio
wealth falls below the barrier, but it does not differentiate
between a substantial shortfall at one point in time and a
series of small shortfalls over time. The EMS model on
the other hand, focuses on limiting the maximum shortfall
and therefore does not penalize portfolio wealth falling
just slightly below the barrier several times. So one model
limits the number of times portfolio wealth falls below the
barrier while the other limits any substantial shortfall.

3. Bond pricing

In this section we present a three-factor term structure
model which we will use to price both our bond portfolio
and the fund’s liability. Many interest-rate models, like
the classic one-factor Vasicek (1977) and Cox et al. (1985)
class of models and even more recent multi-factor models
like Anderson and Lund (1997), concentrate on modelling
just the short-term rate.

However, for minimum guaranteed return funds

we have to deal with a long-term liability and bonds of

varying maturities. We therefore must capture the
dynamics of the whole term structure. This has been
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achieved by using the economic factor model described
below in section 3.1. In section 3.2 we describe the pricing
of coupon-bearing bonds and section 3.3 investigates the
consequences of rolling the bonds on an annual basis.

3.1. Yield curve model

To capture the dynamics of the whole term structure,
we will use a Gaussian economic factor model (EFM)
(see Campbell (2000) and also Nelson and Siegel (1987))
whose evolution under the risk-neutral measure Q is
determined by the stochastic differential equations

dX[ = (/“(’X — AxXl)dl + dew;\/, (28)
dY, = (uy — Ay Y,)dt + oydW/, (29)
dR, = k(X, + Y, — R,)dt + oxdWR, (30)

A=B| D p > Wiw —ﬂ(Zp(w)H(w)) 27)

1eT4U{T}

we

where the dW terms are correlated. The three
unobservable Gaussian factors R, X and Y represent
respectively a short rate, a long rate and the slope between
an instantaneous short rate and the long rate. Solving
these equations the following formula for the yield at
time ¢ with time to maturity equal to 7 — ¢ is obtained
(for a derivation, see Medova et al. (2005))

A T)R + B, T)X,+ C(t,T)Y, + D(1,T)

Yur T
(31
where
(ko
A(Z,T)._%(l—e ) (32)
BTy L (1en ) L (1 0) | )
Tk gy k ’

_ k1 (-1 —k(T—1)
C(t,T)._k_)LY{)Ly<1—e )—k(l—e ) . (34)
. 1 —k(T—1) Hx | MKy

D(Z,T)._<T—t—k<1—e ) ot
Ky Ky
——=B(t,T)——C(t T
P (¢, T) oy (t,T)
1< my. —2hy(T—1) ny. —2Ay(T—1)
- —Xif1 = X — (1 = Y
2;{2AX( ¢ >+2)»Y( ) )
2
i (v —2k(T-1) 200
(1= ) 4 g
2my,my, (1 _ e—(xx+xy>(r—r>)
Ax+ Ay
2myn; (g Hk)(T—1) 2my,pi —x(T—1)
+AX+k(1 e )+ " (1-e )
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ZmY,-ni —(Ay+k)(T—1) 2mY,-Pi —Ay(T—0)
xy+k<1_e )+ oy <l_e )
2n;p; —k(T—1)
+T(1 e ) (35)
and
kUXi
My = ———— 0!
BT k=)
kUY,»
my = ———"—!
T ay(k = Ay)
_ GXi GY, _ UR:’
L TR T
pi = —(my +my +n,). (36)

Bond pricing must be effected under the risk-neutral
measure Q. However, for the model to be used for for-
ward simulation the set of stochastic differential
equations must be adjusted to capture the model
dynamics under the real-world or market measure P.
We therefore have to model the market prices of risk
which take us from the risk-neutral measure Q to the
real-world measure P.

Under the market measure P we adjust the drift term
by adding the risk premium given by the market price of
risk y in terms of the quantity of risk. The effect of this is
a change in the long-term mean, e.g. for the factor X
the long-term mean now equals (uy + Yyox)/Ay. It is
generally assumed in a Gaussian world that the quantity
of risk is given by the volatility of each factor.

This gives us the following set of processes under the
market measure

dX, = (uy — Ay X, + yyoy)d + oy dW, (37)
dY, = (uy = Ay Y, + yyoy)ds + oydW/, (38)
dR, = (k(X, + Y, = R) + yrog}dr + oxdWy,  (39)

where all three factors contain a market price of risk y in
volatility units.

The yields derived in the economic factor model are
continuously compounded while most yield data are
annually compounded. So for appropriate comparison
when estimating the parameters of the model we
will have to convert the annually compounded
yields into continuously compounded yields using the
transformation

continuous

_ ln(l + yannual). (40)

In the limit as 7 tends to infinity it can be shown that
expression (31) derived for the yield does not tend to the
‘long rate’ factor X, but to a constant. This suggests that
the three factors introduced in this term structure model
may really be unobservable. To handle the unobservable
state variables we formulate the model in state space
form, a detailed description of which can be found in
Harvey (1993) and use the Kalman filter to estimate the
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parameters (see e.g. Dempster et al. 1999 or Medova et al.
2005).

3.2. Pricing coupon-bearing bonds

As sufficient historical data on Euro coupon-bearing
Treasury bonds is difficult to obtain we use the
zero-coupon yield curve to construct the relevant bonds.
Coupons on newly-issued bonds are generally closely
related to the ccorresponding spot rate at the time, so
the current zero-coupon yield with maturity 7 is used as
a proxy for the coupon rate of a coupon-bearing Treasury
bond with matunty T. For example, on scenario w the
coupon rate 85 (a)) on a newly issued 10-year Treasury
bond at time =2 will be set equal to the projected 10-
year spot rate y, jo(@) at time t=2.

Generally
BT d
8, (w) =y, r(w), VYteT® YoeQ, 41)
52 (@) = 8(w), VieT, Voeg, (42)

where [-] denotes integral part. This ensures that as the
yield curve falls, coupons on newly-issued bonds will go
down correspondingly and each coupon cash flow will be
discounted at the appropriate zero-coupon yield.

The bonds are assumed to pay coupons semi-annually.
Since we roll the bonds on an annual basis, a coupon
will be received after six months and again after a year
just before the bond is sold. This forces us to distinguish
between the price at which the bond is sold at rebalancing
times and the price at which the new bond is purchased.

Let P(be"T)) denote the selling price of the bond B at
time ¢, assuming two coupons have now been paid out
and the time to maturity is equal to T — 1, and let P(b;’(?)
denote the price of a newly issued coupon-bearing
Treasury bond with a maturity equal to 7.

The ‘buy’ bond price at time ¢ is given by

T
B/ (w)
— FBTe—(T‘Fm_f)}'r.TH/J—/(‘”)
BT
N 8 (@) pB” 51y (@)
s=(21/2)+(1/2), (121} /D+1,..., LL]+T 2
weQ, te T, (43)

where the principal F' of the bond is discounted in the
first term and the stream of coupon payments in the
second.
At rebalancing times ¢ the sell price of the bond is
given by
B (w) = F&' e (T~ D@
T
5?—1(60) B —(s—1)y,
+ Z F e (s [)J'I,(.s—l)(w)
s=(1/2), 1,..., T—1 2

weQ te {Td\{O}}U{T} (44)
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with coupon rate 8?11 (w). The coupon rate is then reset
for the newly-issued Treasury bond of the same maturity.
We assume that the coupons paid at six months
are re-invested in the on-the-run bonds. This gives the
following adjustment to the amount held in bond B
at time 7.

T T
(1 /2)5;B (w)FB Xi—(1/12), pr(®)
SP)3 (@)

teT’, we Q. (45)

X, gr(w) = X;_112), gr(®) +

4. Historical backtests

We will look at an historical backtest in which statistical
models are fitted to data up to a trading time ¢ and
scenario trees are generated to some chosen horizon
t+ T. The optimal root node decisions are then
implemented at time ¢ and compared to the historical
returns at time ¢+ 1. Afterwards the whole procedure is
rolled forward for T trading times.

Our backtest will involve a telescoping horizon as
depicted in figure 4.

At each decision time ¢ the parameters of the stochastic
processes driving the stock return and the three factors of
the term structure model are re-calibrated using historical
data up to and including time ¢ and the initial values of
the simulated scenarios are given by the actual historical
values of the variables at these times. Re-calibrating the
simulator parameters at each successive initial decision
time ¢ captures information in the history of the variables
up to that point.

Although the optimal second and later-stage decisions
of a given problem may be of ‘what-if’ interest, manager
and decision maker focus is on the implementable

5-year scenario tree

first-stage decisions which are hedged against the
simulated future uncertainties. The reasons for
implementing stochastic optimization programs in this
way are twofold. Firstly, after one year has passed the
actual values of the variables realized may not coincide
with any of the values of the variables in the simulated
scenarios. In this case the optimal investment
policy would be undefined, as the model only has optimal
decisions defined for the nodes on the simulated
scenarios. Secondly, as one more year has passed new
information has become available to re-calibrate the
simulator’s parameters. Relying on the original optimal
investment strategies will ignore this information.
For more on backtesting procedures for stochastic
optimization models see Dempster ez al. (2003).

For our backtests we will use three different
tree structures with approximately the same number of
scenarios, but with an increasing initial branching factor.
We first solve the five-year problem using a 6.6.6.6.6 tree,
which gives 7776 scenarios. Then we use 32.4.4.4.4 = 8192
scenarios and finally the extreme case of 512.2.2.2.2 =
8192 scenarios.

For the subsequent stages of the telescoping horizon
backtest we adjust the branching factors in such a way
that the total number of scenarios stays as close as
possible to the original number of scenarios and the
same ratio is maintained. This gives us the tree structures
set out in table 2.

Historical backtests show how specific models would
have performed had they been implemented in practice.
The reader is referred to Rietbergen (2005) for the
calibrated parameter values employed in these tests.
Figures 5 to 10 show how the various optimal portfolios’
wealth would have evolved historically relative to the
barrier. It is also important to determine how the models

4-year scenario tree

3-year scenario tree

2-year scenario tree

1-year scenario tree

Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004
Figure 4. Telescoping horizon backtest schema.

Table 2. Tree structures for different horizon backtests.
Jan 1999 6.6.6.6.6 = 7776 32.4.4.4.4= 8192 512.2.2.2.2= 8192
Jan 2000 9.9.9.9= 6561 48.6.6.6 = 10368 512.2.2.2= 4096
Jan 2001 20.20.20 = 8000 80.10.10= 8000 768.3.3= 6912
Jan 2002 88.88 = 7744 256.32= 8192 1024.8 = 8192
Jan 2003 7776 8192 8192

2006 stvle 7510
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performed in-sample on the generated scenario trees and
whether or not they had realistic forecasts with regard
to future historical returns. To this end one-year-ahead
in-sample expectations of portfolio wealth are shown as
points in the backtest performance graphs. Implementing
the first-stage decisions in-sample, the portfolio’s wealth
is calculated one year later for each scenario in the simu-
lated tree after which an expectation is taken over the
scenarios.

From these graphs a first observation is that the
risk management monitoring incorporated into

Backtest 99-04: 6.6.6.6.6 = 7776 scenarios
expected average shortfall
170
160
150
140
130
NN
120
4 N\
110 /
100 424
90

80
1-Jan-99

SN

v

1-Jan-00 31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-03

—— barrier —— EAS a Exp EAS —— EAS MC = Exp EAS MC

Figure 5. Backtest 1999-2004 using expected average shortfall
for the 6.6.6.6.6 tree.

Backtest 99-04: 6.6.6.6.6 = 7776 scenarios

expected maximum shortfall
170
160
150
140
130
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90
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1-Jan-99
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Figure 6. Backtest 1999-2004 using
shortfall for the 6.6.6.6.6 tree.

expected maximum

Backtest 99-04: 32.4.4.4.4 = 8192 scenarios
expected average shortfall
150

140
130

120
110 /4,&“/\/

- /\/\,\/ ’\/\gg/
90
80
1-Jan-99

1-Jan-00 31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-03
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Figure 7. Backtest 1999-2004 using expected average shortfall
for the 32.4.4.4.4 tree.
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the model appears to work well. In all cases the
only time portfolio wealth dips below the barrier, if at
all, is on 11 September 2001. The initial in-sample
wealth overestimation of the models is likely to be
due mainly to the short time series available for initial
parameter estimation which led to hugely inflated stock
return expectations during the equity bubble. However as
time progresses and more data points to re-calibrate

the model are obtained, the models’ expectations
and real-life realizations very closely approximate
each other.
Backtest 99-04: 32.4.4.4.4 = 8192 scenarios
expected maximum shortfall

150

140

130

120

110 A )&

100 oA e N NS |

v

90

80

1-Jan-99  1-Jan-00 31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-03

—— barrier —— EMS 1 Exp EMS —— EMS MC = Exp EMS MC

Figure 8. Backtest 1999-2004 using
shortfall for the 32.4.4.4.4 tree.

expected maximum

Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
expected average shortfall
140

130
120

110 as ]

100
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80
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1-Jan-00 31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-03

|7 barrier —— EAS 1 Exp EAS —— EASMC = Exp EAS MC|

Figure 9. Backtest 1999-2004 using expected average shortfall
for the 512.2.2.2.2 tree.

Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
expected maximum shortfall
140

130

120
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Figure 10. Backtest 1999-2004 wusing expected maximum
shortfall for the 512.2.2.2.2 tree.

[Page No. 2531 {TANDF REVMROUF/ROUF | 7 02/ROUF A 226392.3d (ROUF)

ROUF A 226392



ks

254 M. A. H. Dempster et al.

Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
expected maximum shortfall
160

140 4 /\/\/\

100 A ~

—_— 1

80 \/\/\/
60
1-Jan-99 1-Jan-00 31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-03

—— barrier — EMS —— EMS MC —— eurostoxx 50 |

Figure 11. Comparison of the fund’s portfolio performance to
the Eurostoxx 50.

Table 3. Portfolio allocation expected maximum shortfall
using the 32.4.4.4.4 tree.

ly 2y 3y 4y Sy 10y 30y

Stock

Jan 99 0 0 0 0 0 023 045 0.32
Jan 00 O 0 0 0 0 O 0.37 0.63
Jan 01 0.04 O 0 0 0 039 053 040
Jan02 0.08 0.16 074 0 0 O 0 0.01
Jan03 092 0 0 0 0 007 0 0.01

Table 4. Portfolio allocation expected maximum shortfall with
monthly checking using the 32.4.4.4.4 tree.

ly 2y 3y 4y Sy 10y 30y Stock
Jan 99 0 0 0 0 049 0.27 0 0.24
Jan 00 0 0 0 0 025 0.38 0 0.36
Jan 01 0 0 0 0 049 0.15 0 0.36
Jan 02 0 0 0 047 044 0 0 0.10
Jan 03 0 0 0.78 022 0 0 0 0.01

For reference we have included the performance of the
Eurostoxx 50 in figure 11 to indicate the performance
of the stock market over the backtesting period.
Even though this was a difficult period for the optimal
portfolios to generate high historical returns, it provides
an excellent demonstration that the risk management
incorporated into the models operates effectively. It is
in periods of economic downturn that one wants the
portfolio returns to survive.

Tables 3 and 4 give the optimal portfolio allocations
for the 32.4.4.4.4 tree using the two maximum shortfall
objective functions. In both cases we can observe a for
the portfolio to move to the safer, shorter-term assets as
time progresses. This is naturally built into the model
as depicted in figure 3.

For the decisions made in January 2002/2003,
the portfolio wealth is significantly closer to the barrier
for the EMS model than it is for the EMS MC model.
This increased risk for the fund is taken into account
by the EMS model and results in an investment
in safer short-term bonds and a negligible equity

2006 stvle 7510 [16.4.2007-9:16am] Revised Proof 1245-2561

130

N ~

110

100 VAV

90

80

1-Jan-99 1-Jan-00  31-Dec-00 31-Dec-01 31-Dec-02 31-Dec-03

|— Barrier —EMS MC = Exp EMS MC |

Figure 12. Expected maximum shortfall with monthly checking
using the 512.2.2.2.2 tree for the GBM with jumps equity index
process.

component. Whereas the EMS model stays in the
one to three year range the EMS MC model invests
mainly in bonds with a maturity in the range of three
to five years and for both models the portfolio wealth
manages to stay above the barrier.

From figures 5 to 10 it can be observed that in all cases
the method with monthly checking outperforms the
equivalent method with just annual shortfall checks.
Similarly as the initial branching factor is increased, the
models’ out-of-sample performance is generally
improved. For the 512.2.2.2.2 = 8192 scenario tree, all
four objective functions give optimal portfolio allocations
which keep the portfolio wealth above the barrier at
all times, but the models with the monthly checking still
outperform the others. The more important difference
however seems to lie in the deviation of the expected
in-sample portfolio’s wealth from the actual historical
realization of the portfolio value. Table 5 displays this
annual deviation averaged over the five rebalances and
shows a clear reduction in this deviation for three of the
four models as the initial branching factor is increased.
Again the model that uses the expected maximum
shortfall with monthly checking as its objective function
outperforms the rest.

Overall the historical backtests have shown that the
described stochastic optimization framework carefully
considers the risks created by the guarantee. The EMS
MC model produces well-diversified portfolios that do
not change drastically from one year to the next and
results in optimal portfolios which even through a period
of economic downturn and uncertainty remained above
the barrier.

5. Robustness of backtest results

Empirical equity returns are now well known not to
be normally distributed but rather to exhibit complex
behaviour including fat tails. To investigate how the
EMS MC model performs with more realistic asset return
distributions we report in this section experiments using a
geometric Brownian motion with Poisson jumps to model
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Table 5. Average annual deviation.

EAS EAS MC EMS EMS MC
6.6.6.6.6 9.87% 13.21% 9.86% 10.77%
324444 10.06% 9.41% 9.84% 7.78%
512.2.2.2.2 10.22% 8.78% 7.78% 6.86%

Table 6. Portfolio allocation expected maximum shortfall with
monthly checking using the 512.2.2.2.2 tree.

ly 2y 3y 4y Sy 10y 30y  Stock
Jan99 0 0 0 0 0.69 0.13 0 0.18
Jan00 0 0 0 0 063 0 0 0.37
Jan 01 0 0 0 0 037 044 0 0.19
Jan02 0 0 0 0 090 0 0 0.10
Jan03 0 0 005 0 094 O 0 0.01

Table 7. Portfolio allocation expected maximum shortfall with
monthly checking using the 512.2.2.2.2 tree for the GBM with
Poisson jumps equity index process.

ly 2y 3y 4y Sy 10y 30y  Stock
Jan 99 0 0 0 0 0.12 0.77 0 0.11
Jan 00 0 0 0 0 0 0.86 0 0.14
Jan 01 0 0 0 0 043 0.56 0 0.01
Jan 02 0 0 0 0 0.70 0.11 0 0.19
Jan 03 0 0 0 0 0.04 0.81 0 0.15

equity returns. The stock price process S is now assumed
to follow

ds =
S = fisdr + G5dW; + JdNy, (46)
t

where N is an independent Poisson process with intensity
A and the jump saltus J at Poisson epochs is an indepen-
dent normal random variable.

As the EMS MC model and the 512.2.2.2.2 tree
provided the best results with Gaussian returns the
backtest is repeated for this model and treesize.
Figure 12 gives the historical backtest results and tables 6
and 7 represent the allocations for the 512.2.2.2.2 tests
with the EMS MC model for the original GBM process
and the GBM with Poisson jumps process respectively.
The main difference in the two tables is that the invest-
ment in equity is substantially lower initially when the
equity index volatility is high (going down to 0.1%
when the volatility is 28% in 2001), but then increases
as the volatility comes down to 23% in 2003. This is
born out by figure 12 which shows much more realistic
in-sample one-year-ahead portfolio wealth predictions
(cf. figure 10) and a 140 basis point increase in terminal
historical fund return over the Gaussian model.

2006 stvle 7510 [16.4.2007-9:17am1 Revised Proof 1245-2561

These phenomena are the result of the calibration of the
normal jump saltus distributions to have negative means
and hence more downward than upwards jumps resulting
in downwardly skewed equity index return distributions,
but with the same compensated drift as in the GBM case.
As a consequence the optimal portfolios are more sensi-
tive to equity variation and take benefit from its lower
predicted values in the last two years.

Although much more complex equity return processes
are possible, these results show that the historical backtest
performance of the EMS MC model is only improved in
the presence of downwardly skewed asset equity return
distributions possessing fat tails due to jumps.

6. Conclusions

This paper has focused on the design of funds to support
investment products which give a minimum guaranteed
return. We have concentrated here on the design of the
liability side of the fund, paying particular attention to
the pricing of bonds using a three-factor term structure
model with reliable results for long-term as well as the
short-term yields. Several objective functions for the
stochastic optimization of portfolios have been
constructed using expected average shortfall and expected
maximum shortfall risk measures to combine risk
management with strategic asset allocation. We also
introduced the concept of monthly shortfall
checking which improved the historical backtesting
results considerably. In addition to the standard GBM
model for equity returns we reported experiments using
a GBM model with Poisson jumps to create downwardly
skewed fat tailed equity index return distributions.
The EMS MC model responded well with more
realistic expected portfolio wealth predictions and the
historical fund portfolio wealth staying significantly
above the barrier at all times.

The models of this paper have been extended in
practice to open ended funds which allow for
contributions throughout the lifetime of the correspond-
ing investment products. In total funds of the order of 10
billion euros have been managed with these extended
models. In future research we hope to examine open
multi-link pension funds constructed using several unit
linked funds of varying risk aversion in order to allow
the application of individual risk management to each
client’s portfolio.
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