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We discuss the general optimization problem of choosing a copula with minimum entropy
relative to a specified copula and a computationally intensive procedure to solve its
dual. These techniques are applied to constructing an empirical copula for CDO tranche
pricing. The empirical copula is chosen to be as close as possible to the industry standard
Gaussian copula while ensuring a close fit to market tranche quotes. We find that the
empirical copula performs noticeably better than the base correlation approach in pricing
non-standard tranches and that the market view of default dependence is influenced by
maturity.
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1. Introduction

Copula methods for pricing collateral debt obligations (CDOs) in general assume
some parametric form for the copula of default times and try to obtain the values
for model parameters which produce prices that most closely match those of the
market. An unsatisfactory aspect of these methods is that they offer little underlying
rationale for copula choice. This paper shows how to choose the copula empirically
by optimizing its entropy. The strength of the entropic approach is that it provides
an information-theoretic rationale for the choice of the copula and also results in
excellent fits to data. By minimizing the relative entropy with respect to the industry
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standard Gaussian distribution, we choose the copula that is closest to the standard
while ensuring a close fit to market prices.

Our method is similar in spirit to Hull and White [13], who imply from market
data an empirical copula in the standard one-factor framework using the criterion of
maximal smoothness. We essentially follow the same methodology as theirs but in a
more general framework using the criterion of minimum relative entropy. Hull and
White’s method is limited to calibration to single-maturity data, and is not easily
extendable to non-constant hazard rates. The entropic copula approach, however,
can be used to calibrate to data across different maturities and naturally accom-
modates any stochastic hazard rate model. Both these methods promise perfect to
near-perfect fits to the data.

The remainder of this introduction discusses credit risk modeling and CDO
tranches. Section 2 describes the principle of minimum relative entropy and how to
express it numerically and Sec. 3 discusses the maximum entropy copula problem.
This is extended to the minimum relative entropy copula problem for CDO tranche
pricing in Sec. 4, where computational results based on market data are presented.
Section 5 concludes.

1.1. Correlated intensities in portfolio

credit risk modeling

In single-name credit risk modeling, there are two main approaches: the structural
approach and the reduced form approach. The latter has been more popular in
pricing applications because it generally offers better fits. A typical example of the
reduced form approach is to assume that default occurs when a doubly-stochastic
Poisson process (also called a Cox process) first makes a jump.

Extending credit risk modeling to multiple names introduces an extra com-
plication. The interdependence between firms in their probability of default is
an important aspect that must be taken into account. Some early reduced form
approaches attempted to model this dependence by allowing the stochastic inten-
sities of the Cox processes to be correlated and the default events conditioned on
the intensities to be independent. Several examples of these models can achieve
relatively close fits to market data, for example Mortensen [18] and Graziano and
Rogers [11]. As Mortensen [18] conceded, however, the resulting model parame-
ters can be unrealistic because an unnaturally high degree of correlation between
the intensities is needed to reproduce the observed market prices. Moreover, Das
et al. [6] in their empirical study concluded that the level of default dependence
that can be realistically introduced by this technique is not sufficient to capture
the clustering of defaults that are observed in the market. Why this is the case can
be appreciated when we remember that the probabilities of default we are dealing
with are very low. To achieve significant clustering of defaults, the default prob-
abilities must be wildly fluctuating at unrealistic levels, as well as being highly
correlated.



June 29, 2007 1:34 WSPC-104-IJTAF SPI-J071 00439

Empirical Copulas for CDO Tranche PricingUsing Relative Entropy 681

1.2. Copulas

The most popular method for modeling portfolio credit risk has been to use copulas.
Copulas are used to introduce dependence between default times in a direct way,
not indirectly through default intensities. This allows us to reproduce the level of
clustering of defaults that we observe in reality. However, as mentioned previously,
the choice of copula is rather arbitrary, motivated by two main criteria: the quality
of final fit to the data, and computational tractability. As we shall see, choosing an
empirical copula using the entropic approach gives us an underlying rationale for
this choice.

1.3. CDO tranche pricing

A CDO is a derivative structure which provides protection against the loss on a
portfolio of defaultable assets. The seller of protection on a tranche of this portfolio
receives regular premium payments. In return, he must pay the buyer of protection
any losses on that tranche that are incurred through defaults. Each tranche covers
only a portion of the total potential losses of the portfolio.

To illustrate, consider a CDO portfolio of n names, each with unit nominal
amount and with maturity T . Then denoting τ j as the time of default of name j

the amount lost on the portfolio at time t is

L(t, τ ) = (1 − R)
n∑

j=1

1{τ j<t}, (1.1)

where R is the constant recovery rate and τ = (τ 1, . . . , τn) is the vector of default
times.1 Now consider a tranche of this CDO with attachment point α and detachment
point β. Then the loss on this tranche at time t will be the non-decreasing function

M(t, τ ) =




0 if L(t, τ ) ≤ α,

L(t, τ ) − α if α < L(t, τ ) ≤ β,

β − α if L(t, τ ) > β.

= β − α − (β − L(t, τ ))+ + (α − L(t, τ ))+,

where (x)+ := max{x, 0}. Thus the loss on an (α, β) tranche can be written in
terms of a put spread as shown in Fig. 1 below. Then the default leg — the present
value of the (random) amount that the seller of protection needs to pay — can be
written as

D(τ , T ) =
n∑

j=1

e−rτj 1{τ j≤T}
(
M(τ j , τ ) − M(τ−

j , τ )
)

(1.2)

1We use boldface throughout to denote random entities.
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Fig. 1. Loss on a (α, β) tranche vs portfolio loss.

and the premium leg — the present value of the (random) amount that the seller
of protection receives in return — can be written as

P (τ , T ) = s

P∑
k=1

e−rtk (β − α − M(tk, τ )) , (1.3)

where s is the premium rate, and where tk ≤ T, k = 1, . . . , P , are the premium
payment dates.2

To price a CDO tranche, we wish to work out the fair premium rate s̄. Like any
other swap, this is the value that makes the expected payoffs of the default and
premium legs equal. Therefore the fair premium rate is the value s̄ which satisfies

E[D(τ , T )] − s̄E[P (τ , T )] = 0. (1.4)

It should be clear that it is the “tranching” feature which makes the fair premium
rate s̄ depend on the default dependence. If we consider a “tranche” that spans the
whole portfolio, i.e., a (0, Lmax) tranche, then we would have M ≡ L; since L is
linear in each of the default times, the expected payoffs E[D(τ , T )] and E[P (τ , T )]
only depend on the mean of τ and not its higher moments, and hence the fair
premium rate s̄ does not depend on the default dependence. This is not the case if
the tranche only spans a subset of the overall portfolio loss.

2. Minimum Relative Entropy

The principle of minimum relative entropy is closely related to the principle of
maximum entropy and it is instructive to consider the latter first.

2.1. Principle of maximum entropy

The principle of maximum entropy (MaxEnt) is a method of obtaining a unique
probability distribution for a random variable from a given set of data assumed to
be generated by it. The principle was first formulated by Jaynes [15] and is used in
a wide variety of applied sciences.

2We ignore accrued payments here for expositional simplicity but include them in our numerical
studies.
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To illustrate a typical problem in finance, suppose we have a finite set of vanilla
European option prices on a stock. The price of each option is a function of the risk-
neutral density of the stock price at maturity. The aim of MaxEnt in this example is
to infer from the given set of option prices the risk-neutral density of the stock price.

However, such a problem is generally highly under-determined because we have
many fewer option prices than possible stock prices. But a unique density can be
obtained if we optimize some objective function that depends on the density, while
satisfying the observed market prices. Various forms for the objective function have
been proposed, such as Fisher information [9, 12], maximal smoothness [13, 14] and
entropy [4].

Since entropy is a measure of uncertainty, inferring the probability distribution
of a random variable by maximizing entropy is optimal in the sense that we only take
into account information that is given and do not assume anything else about the
distribution. We choose a distribution which is consistent with the given information
but otherwise has maximum uncertainty. MaxEnt applied to finance is thus related
to the concept of market efficiency in the sense that prices fully reflect all available
information in the market.

The MaxEnt principle is a non-parametric method of estimating a probability
distribution. In parametric estimation the focus is on obtaining the best estimator
θ̂ of a given parametric family f(·|θ) of densities. This process involves two steps:
model specification and model estimation. In non-parametric estimation the focus
is on obtaining a good estimate of f directly from the data, which eliminates the
need for model specification.

The MaxEnt principle is thus well-suited to the estimation of copulas in portfolio
credit risk modelling. As discussed earlier, the choice of copula for CDO tranche
pricing in much of the literature is rather arbitrary, motivated by quality of fit.
These methods are parametric in nature. By using a non-parametric approach such
as MaxEnt the problem of arbitrarily choosing a copula is obviated.

To set notation, suppose we observe the data set {(ã1, ā1), . . . , (ãm, ām)} with
ãi, āi ∈ R for each i = 1, . . . , m. We know from the problem at hand that
E[ai(x, āi)] = ãi for each i, where x is a random vector taking values in some
domain D ⊆ R

n.
Letting f be the density for x (or probability mass function if discrete) we wish

to maximize its differential entropy, i.e., solve the problem

sup
f∈L+

1 (D)

−
∫

D

f(x) log f(x)dx, (2.1)

subject to the data constraints∫
D

ai(x, āi)f(x)dx = ãi i = 1, . . . , m, (2.2)

where ai(·, āi) is a piecewise continuous function on D and L+
1 (D) denotes the non-

negative cone of the space of real-valued integrable functions on D with the usual
integral norm.
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2.2. Solution to the MaxEnt problem

The Lagrangian for this problem can be easily maximized by elementary calculus
of variations.3,4 After normalizing f to make it a probability density the solution
is of the form

f̂(x, λ) =
1

Z(λ)
exp

{
m∑

i=1

λiai(x, āi)

}
, (2.3)

where λ = (λ1, . . . , λm) and Z(λ) :=
∫

exp{∑i λiai(x, āi)}dx is the normalizing
constant. The optimal f can then found by solving for the unique values λi that
satisfy the constraints (2.2).

However, instead of solving the m simultaneous equations (2.2) with f := f̂ to
determine the lambdas, we can more elegantly solve the dual problem. Consider the
dual function

L∗(λ) = −
∫

D

f̂(x) log f̂(x)dx +
∫

D

λ′ (A(x) − ã) f̂(x, λ)dx (2.4)

= log Z(λ) − λ′ã, (2.5)

where A(x) := (a1(x, ā1), . . . , am(x, ām))′ and ã = (ã1, . . . , ãm)′ and the prime
symbol denotes transpose. The dual problem of the MaxEnt problem given by (2.1)
and (2.2) is

inf
λ∈Rm

L∗(λ).

This is a much easier optimization problem than the original primal problem
because it is finite dimensional and unconstrained, and we know that the dual
function is always convex. Moreover, we can easily show that it is strictly convex if
the functions ai are linearly independent.

Proposition 2.1. The dual function (2.4) is convex, and it is strictly convex if and
only if the functions ai are linearly independent.

Proof. Take λ̄ and λ̃ in R
m and set λ := sλ̄+ (1− s)λ̃, s ∈ [0, 1]. Then by Hölder’s

inequality

L∗(λ) = log
∫

exp
{
sλ̄′A(x) + (1 − s)λ̃′A(x)

}
dx − sλ̄′ā − (1 − s)λ̃′ā

≤ s

(
log

∫
eλ̄′A(x)dx − λ̄′ā

)
+ (1 − s)

(
log

∫
eλ̃′A(x)dx − λ̃′ā

)
.

If the ai’s are not linearly independent then we can find a λ̄ and λ̃ with λ̄ �= λ̃ such
that λ̄′A ≡ λ̃′A, whence Hölder’s inequality becomes equality. But if the ai’s are
linearly independent, then seeing Hölder’s inequality as an application of Jensen’s

3 To apply the Euler–Lagrange equation, i.e., equate the first variation to zero, we need to assume
that there exists a feasible f with finite entropy and that f > 0 almost everywhere.
4Note that the Lagrangian is concave in f .
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inequality for the strictly concave function given by f(x) := xs for s ∈ (0, 1), the
result follows.

Alternatively we could show that the Hessian is the covariance matrix of
the ai’s, and thus the dual function is strictly convex if the ai’s are linearly
independent.

The minimization can be solved numerically using any gradient-based optimiza-
tion method such as the BFGS quasi-Newton algorithm.5 We just need the gradient
vector of the dual, whose ith element is given by

∂L∗(λ)
∂λi

=
∫

D

ai(x, āi)f̂(x, λ)dx − ãi.

We can differentiate the dual (2.4) under the integral sign since the integrand is in
L1(D) for each fixed λ, and is differentiable with respect to λ for almost all x with
bounded derivative for all bounded λ.

Notice that the gradient corresponds to the constraints (2.2) and that the con-
straints will be satisfied when the gradient vector is zero.

In addition to the assumption that the feasible set is not empty, we also impose
the assumption mentioned previously in footnote 3 that there must exist a feasible
f with f > 0 almost everywhere which has finite entropy.

2.3. Regularization

The Slater constraint qualification that we have just mentioned is difficult to check
in general. In particular, it is difficult to determine whether the observed data set
{(ã1, ā1), . . . , (ãm, ām)} is consistent.6 A related problem is that in real applications
there may be measurement errors in the observed data — not only are these errors
a problem in themselves, but they may also cause inconsistencies in the data which
render the feasible set empty.

Both these problems can be overcome if we consider a penalized version of the
MaxEnt problem

sup
f∈L+

1 (D)

−
∫

D

f(x) log f(x)dx − 1
2θ

m∑
i=1

w2
i

[∫
D

ai(x, ãi)f(x)dx − āi

]2

(2.6)

for some positive θ and wi. Here θ plays the role of “temperature” — the lower
we set θ, the smaller the errors will be. The wi act as weights to emphasize the
importance of a particular constraint — the higher we set wi, the smaller the error

5The BFGS algorithm was independently developed by Broyden [3], Fletcher [8], Goldfarb [10]
and Shanno [19].
6Borwein et al. [2] have however developed an easy-to-check test for this constraint qualification
in the standard MaxEnt problem for call options.
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for the ith constraint will be. Although this problem is unconstrained, as discussed
in Decarreau et al. [7], we can reformulate (2.6) in the form of the original problem as

sup
f∈L+

1 (D),ε∈Rm

−
∫

D

f(x) log f(x)dx − 1
2θ

‖ε‖2

subject to ∫
D

ai(x, āi)f(x)dx − ãi =
εi

wi
, i = 1, . . . , m,

where ‖ · ‖ denotes the Euclidean norm on R
m. Then one can easily show that the

dual function of this penalized problem is given by

L∗(λ) = log Z(λ) − λ′ã +
1
2
θ‖λ̃‖2,

where λ̃ = (λ1/w1, . . . , λm/wm)′, and the ith element of its gradient vector is
given by

∂L∗(λ)
∂λi

=
∫

D

ai(x, āi)f̂(x, λ)dx − ãi + θ
λi

w2
i

.

Thus we can still use the dual approach as discussed above to solve this problem.
The above technique is known as penalization. Another approach, called relax-

ation, is to solve the problem

sup
f∈L1(D)

−
∫

D

f(x) log f(x)dx

subject to ∣∣∣∣
∫

D

ai(x, āi)f(x)dx − ãi

∣∣∣∣ ≤ ε, i = 1, . . . , m

for some ε > 0. The problem with relaxation, as opposed to penalization, is that
the issue of consistency remains — the feasible set may still be empty if ε is too
small. We will use penalization for our application.

2.4. Principle of minimum relative entropy

Since the distribution with the greatest entropy is the uniform distribution,7 when
we apply the principle of maximum entropy we are effectively choosing the dis-
tribution that is “closest” to the uniform distribution while satisfying the data
constraints. But we could, if we wish, choose a distribution other than the uniform
distribution. To do this we use the concept of relative entropy.

7Among distributions with bounded support.
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Relative entropy is a measure of “distance” of one probability distribution
to another. For absolutely continuous probability distributions F and G it is
defined by8

L(F |G) =
∫

D

f(x) log
f(x)
g(x)

dx,

where f and g are the densities of F and G respectively. Minimizing relative entropy
will be useful if we have a prior belief about what the empirical distribution might
or should be.

The form of the optimum solution to the minimum relative entropy (MinRelEnt)
problem is almost identical to that of the MaxEnt problem and is given by

f̂(x, λ) =
1

Z(λ)
g(x) exp

{
m∑

i=1

λiai(x, āi)

}
, (2.7)

where Z(λ) :=
∫

g(x) exp{∑i λiai(x, āi)}dx. The optimal f can again be found by
solving for the unique values λi that satisfy the constraints (2.2), possibly using the
dual approach as discussed above.

We need to note the regularity conditions required on the prior g. To apply
the Euler–Lagrange equation, we must (corresponding to footnote 3) make the
assumption that there is a feasible f with finite relative entropy which is equivalent
to g (i.e., their supports agree almost everywhere). The latter is difficult to check
but we can ensure that an optimal solution has finite relative entropy by requiring∫

D
|f̂(x) log f̂(x)/g(x)|dx < ∞. The actual conditions on g therefore depend on the

functions ai and the domain D.

3. The MaxEnt Copula Problem

If we wish to apply the MaxEnt principle to a problem involving a copula, then in
addition to the data constraints (2.2) above we must also require constraints on the
marginals of f .

A copula is a joint distribution function on the unit hypercube [0, 1]n with
marginals that are uniformly distributed. So in addition to the data constraints,
we need the marginal constraints

∫ p

0

∫
[0,1]n−1

f(x)dx¬jdxj = p ∀p ∈ [0, 1] j = 1, . . . , n. (3.1)

We therefore have an infinite dimensional constraint space, unlike the finite
dimensional case defined by (2.2).

8Relative entropy is always non-negative and is equal to zero if and only if f ≡ g.
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3.1. Discrete approximation

One technique to deal with the infinite dimensional constraints is to take only a finite
number p1, . . . , pN ∈ [0, 1] of discrete points and require that the above marginal
constraints hold only for this set of points, but not for all p ∈ [0, 1]. Thus we would
have instead of (3.1)

∫ pk

pk−1

∫
[0,1]n−1

f(x)dx¬jdxj = ∆pk j = 1, . . . , n, k = 1, . . . , N,

where ∆pk := pk − pk−1. This method may be satisfactory for many applications.
For example in pricing CDO tranches, if we take each pk to correspond to quarterly
time steps or even annual time steps and the longest maturity of the tranches is
10 years, then we need only take N = 40 or 10, respectively, because there is
no need to go beyond the longest maturity in the data set. Furthermore, if we
assume a homogeneous portfolio where each firm has the same marginal default
time distribution, then we know that the Lagrange multipliers for the pk’s for each
dimension will be the same. There will thus only be an additional 10 to 40 more
constraints since we do not need a separate set of Lagrange multipliers for each
dimension.

3.2. The MaxEnt copula problem

There are two alternative ways of formulating the MaxEnt copula problem.
For a copula with density c the MaxEnt problem is to maximize its entropy

− ∫
[0,1]n

c(u) log c(u)du, subject to the data constraints being satisfied and the
marginals of c being uniformly distributed. By a simple change of variables, we
can show that this problem is equivalent to minimizing∫

D

f(x) log
f(x)

f1(x1)f2(x2)
dx,

where f is the joint density function with support D, and f1 and f2 are the marginal
density functions of the relevant problem (assuming here just two dimensions for
simplicity). Thus we can see that maximizing the entropy of a copula is equivalent
to mimizing the entropy of the corresponding joint distribution to be as close as
possible to the independent case, i.e., f(x) = f1(x1)f2(x2).

The other way to formulate the MaxEnt copula problem is to start from the joint
distribution. Thus we maximize − ∫

D f(x) log f(x)dx subject to the data constraints
being satisfied and f having marginals f1 and f2. Expressing this in terms of the
copula, the problem becomes equivalent to maximizing

−
∫

[0,1]2
c(u) log {c(u)f1(x1)f2(x2)} du,

where xi = F−1
i (ui) for i = 1, 2 and the Fi are the marginal cdfs.

It would seem that both ways of formulating the problem are equally valid,
although the former allows for an easier interpretation.
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4. Application to CDO Tranche Pricing

We now apply the principle of minimum relative entropy to CDO tranche pricing.
There are several things to consider in specifying this problem.

4.1. The empirical copula problem for CDO pricing

We choose to work with the copula of default times rather than with the joint
distribution. Writing the CDO tranche pricing equation (1.4) in integral form we
have ∫

[0,∞)n

D(τ, T )f(τ)dτ − s̄

∫
[0,∞)n

P (τ, T )f(τ)dτ = 0. (4.1)

Rewriting (4.1) using Sklar’s lemma (f(τ) = c(u)Πfi(τi)) yields∫
[0,1]n

D
(
F−1(u), T

)
c(u)du − s̄

∫
[0,1]n

P
(
F−1(u), T

)
c(u)du = 0, (4.2)

where in terms of the marginal default times (F−1(u) := (F−1
1 (u1), . . . , F−1

n (un)) =
(τ1, . . . , τn) = τ) and c(u) is the density of the copula of default times (noting that
there is cancellation of the Jacobian factor).

Next we must determine the form of the functions ai in terms of the argument
u of the copula density c. Referring back the equations for the default and premium
payoffs (1.2), (1.3) and using (4.2) we obtain9

ai(u, s̄i) =
n∑

j=1

e−rτ j 1{τ j≤T}
(
M(τ j , τ ) − M(τ−

j , τ )
)

− s̄i

P∑
k=1

e−rtk(α − β − M(tk, τ )), (4.3)

where τ j = F−1
j (uj). As for the observed data values s̃i (1.4) implies that they are

always zero except for the equity tranche.10

We can now specify the empirical copula CDO pricing problem. For computa-
tional efficiency we assume a homogenous portfolio. To account for bid-ask spreads
and also for inaccuracy from Monte Carlo integration (discussed below) we solve
the penalized minimum relative entropy problem as outlined in Sec. 2.3. Thus the
problem is

sup
c∈L1[0,1]n,ε∈Rm+N

−
∫

[0,1]n
c(u) log

c(u)
π(u)

du − 1
2θ

|ε|2

9We have not mentioned accrued payments for notational simplicity, but they have been included
in the numerical studies.
10The quote for the equity tranche on the iTraxx and CDX indices represents the upfront payment
that must be made, where the running premium is set at āi = 500 bps.
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subject to the data constraints given by∫
[0,1]n

ai(u, s̄i)c(u)du − s̃i =
εi

wi
i = 1, . . . , m

and the marginal constraints given by∫ pk

pk−1

∫
[0,1]n−1

c(u)du¬jduj − ∆pk =
εk

wk
k = 1, . . . , N,

for each j = 1, . . . , n, where 0 = p0 < · · · < pN < 1 and ∆pk := pk − pk−1.11 Here π

represents some prior copula for the specified marginal default time distributions.
This problem has a unique solution given by

ĉ(u) =
1

Z(λ)
π(u) exp

{
m∑

i=1

λiai(u, s̄i) + n

N∑
k=1

λk1{pk≤u<pk+1}

}
, (4.4)

where λ ∈ R
m+N with normalizing constant

Z(λ) =
∫

[0,1]n
π(u) exp

{
m∑

i=1

λiai(u, s̄i) + n
N∑

k=1

λk1{pk≤u<pk+1}

}
du.

The dual function L∗ of this problem is given by

L∗(λ) = log Z(λ) −
n∑

i=0

λis̃i − n
N∑

k=1

λk∆pk +
1
2
θ|λ̃|2,

where λ̃ = (λ1/w1, . . . , λm+N/wm+N ), and again is strictly convex with gradient

∂L∗(λ)
∂λi

=
∫

[0,1]n
ai(u, s̄i)ĉ(u)du − s̃i + θ

λi

w2
i

∂L∗(λ)
∂λk

= n

∫ pk

pk−1

∫
[0,1]n−1

ĉ(u¬j , uj)du¬j − n∆pk + θ
λk

w2
k

.

We must impose the regularity condition on the prior copula π. As stated in
Sec. 2.4 we require

∫ |ĉ(u) log ĉ(u)/π(u)|du < ∞. If we set c̄ := ĉ/π, then we need∫
|π(u)c̄(u) log c̄(u)|du < ∞. (4.5)

Notice from (4.3) the functions ai have bounded range. As each uj → 0 we
have ai → 125(1 − R). This corresponds to extreme the case where every firm has
defaulted instantaneously at time t = 0. In the opposite extreme as each uj → 1 we
have ai → −s̄iPLmax which corresponds to the case when no firms default. As ai’s
are decreasing functions they are bounded. It follows that the range of c̄ is [b, B]

11Note that we do not need to partition all of [0, 1], as mentioned previously in Sec. 3.1. We can
take pN corresponding to the longest maturity in the data set.
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for some b > 0 and B < ∞. Therefore∫
[0,1]n

|π(u)c̄(u) log c̄(u)|du ≤
∫

[0,1]n
|π(u)|du · ess supu|c̄(u) log c̄(u)| < ∞,

so we can see that (4.5) is satisfied for any prior copula π.
We have assumed that the portfolio is homogeneous, so that each firm has the

same marginal default time distribution. Our experiments and also those of Hull
and White [13] show that the value of a CDO tranche is not particularly sensitive
to whether the portfolio is homogenous or heterogenous — it is the average of the
default probabilities of all firms that principally determines the value of a CDO
tranche.

4.2. Numerical issues

An important issue to consider is how to use the resulting empirical copula to
compute CDO tranche prices. A typical CDO application would be to calibrate the
copula to the iTraxx or CDX tranche quotes. The iTraxx and CDX indices both
refer to a portfolio of 125 names. Therefore to compute the fair premium s̄ using
equation (4.2) requires computing n = 125 dimensional integrals. This forces us to
use Monte Carlo methods.

With just simple Monte Carlo integration computing CDO prices with the Min-
RelEnt copula is very slow to converge. Markov Chain Monte Carlo methods have
been tried and converge much faster in some cases but are not robust in general.12

However, the presence of the factor π(x) in (4.4) allows us to use importance sam-
pling if the prior is chosen to be a copula from which we can easily simulate. This
is effective in speeding up convergence.

We also used an additional importance sampling technique proposed by Joshi
[16]. We choose the prior π to be the Gaussian copula and generate random vari-
ates from it using the well-known one factor method. We then shift the mean
of the common factor by some amount µ to simulate more default times that
will affect the payoffs of the tranches and multiply the resulting integrand by
the likelihood ratio exp{0.5µ2 − µX}, where X is the realization of the common
factor.

4.3. Calibration to simulated CDO prices

We conducted two sets of tests. The first set of tests involved generating a set of
simulated market CDO quotes from a given copula. After calibrating the minimum
relative entropy copula to a subset of these quotes — which we call the training
set — we priced the remaining out-of-sample tranches with it and compared them
to the known true prices to see how well the minimum relative entropy copula can
learn about the true underying copula.

12Specifically, the Metropolis random walk algorithm [17].



June 29, 2007 1:34 WSPC-104-IJTAF SPI-J071 00439

692 M. A. H Dempster, E. A. Medova & S. W. Yang

The following assumptions were used.

Number of firms 125
Risk-free rate 0.05
Hazard rate for each firm 0.005
Recovery rate 0.4
Premium payments per year 4

The prior for the minimum entropy copula was chosen to be the Gaussian copula
with correlation 0.4.

We simulate the market CDO tranche quotes from the stochastic correlation
copula. This copula is simply the Gaussian copula with random correlation values
and is a good candidate because it is one of the copulas that fits market prices
relatively well, as well as being easy to simulate from [5]. We will use the discrete
distribution ρ = (0.066, 0.2, 0.8) with probabilities p = (0.66, 0.1, 0.24) for the
random correlation parameter.13

The training set contains tranches of different maturities and all maturities are
calibrated simultaneously. The training set values and the calibration results are
given in Table 1. Note that the equity (0,3) tranche premia are not in basis points
but are expressed as a percentage of the nominal to be paid upfront. As we can see,
the “calibration” is very good.

The next step is to see how well the empirical copula can “interpolate” across
tranche threshold levels. The out-of-sample tranche pricing results are shown in

Table 1. Calibration to simulated data.

Thresholds Maturity True premium MinRel premium Absolute error
(%) (yrs) (bps) (bps) (bps)

0–3 5 14.7 14.7 0.0
3–6 5 99.2 99.6 0.4
6–9 5 32.9 33.3 0.5
9–12 5 21.8 22.1 0.3
12–22 5 14.0 13.9 0.1

0–3 7 18.2 18.3 0.1
3–6 7 136.2 136.3 0.1
6–9 7 39.7 39.9 0.2
9–12 7 23.3 23.5 0.2
12–22 7 14.6 14.6 0.0

0–3 10 21.3 21.4 0.1
3–6 10 185.1 185.6 0.5
6–9 10 53.9 54.0 0.1
9–12 10 26.7 26.7 0.0
12–22 10 15.4 15.3 0.1

Total error 2.7

13These are the values used in Burtschell et al. [5]. There is nothing inherently special about these
values other than that they produce reasonable prices.
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Table 2. Prices of non-standard tranches using the empirical copula.

Thresholds Maturity True premium MinRel premium Absolute error
(%) (yrs) (bps) (bps) (bps)

1.5–4.5 5 271.1 276.7 5.6
4.5–7.5 5 49.6 50.3 0.7
7.5–10.5 5 25.9 26.2 0.3
10.5–17.0 5 17.2 17.0 0.2

1.5–4.5 7 331.6 336.9 5.3
4.5–7.5 7 65.8 66.1 0.3
7.5–10.5 7 28.7 29.5 0.8
10.5–17.0 7 17.8 18.2 0.4

1.5–4.5 10 389.5 396.9 7.4
4.5–7.5 10 94.1 92.9 1.2
7.5–10.5 10 35.4 34.8 0.6
10.5–17.0 10 19.0 19.0 0.0

Total error 22.8

Table 2. Although it has some trouble pricing the (1.5, 4.5) tranche accurately,
overall we can see that the empirical copula performs well out-of-sample. For com-
parison, we also price these non-standard tranches using the industry standard
base correlation approach [1]. The results are shown in Table 3. We can see that
although the base correlation method is relatively accurate for the senior mezzanine
and super senior tranches, it performs much worse than the MinRelEnt copula for
the (1.5, 4.5) tranche. This is likely because the loss distribution associated with
the true copula has a high peak in this region (see the discussion below). Over-
all, the MinRelEnt copula performs significantly better than the base correlation
approach.

We also tested to see how well the empirical copula can “interpolate”/ “extrapo-
late” across maturities. The results are shown in Table 4. Again we can see excellent

Table 3. Prices of non-standard tranches using base correlation.

Thresholds Maturity True premium BaseCorr premium Absolute error
(%) (yrs) (bps) (bps) (bps)

1.5–4.5 5 271.1 255.8 15.3
4.5–7.5 5 49.6 51.1 1.5
7.5–10.5 5 25.9 23.6 2.3
10.5–17.0 5 17.2 18.2 1.0

1.5–4.5 7 331.6 307.2 24.4
4.5–7.5 7 65.8 70.4 4.6
7.5–10.5 7 28.7 28.1 0.6
10.5–17.0 7 17.8 19.1 1.3

1.5–4.5 10 389.5 363.6 25.9

4.5–7.5 10 94.1 99.3 4.8
7.5–10.5 10 35.4 37.2 1.8
10.5–17.0 10 19.0 20.5 1.5

Total error 85.0
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Table 4. Prices of tranches with non-standard maturities using the empirical
copula.

Thresholds Maturity True premium MinRel premium Absolute error
(%) (yrs) (bps) (bps) (bps)

0–3 3 9.7 9.2 0.5
3–6 3 64.8 70.0 5.2
6–9 3 28.7 34.4 5.7
9–12 3 20.6 25.5 4.9
12–22 3 13.2 18.5 5.3

0–3 4 12.4 12.2 0.2
3–6 4 81.2 82.0 0.8
6–9 4 30.6 32.2 1.6
9–12 4 21.3 22.4 1.1
12–22 4 13.7 15.1 1.4

0–3 6 16.6 16.6 0.0
3–6 6 117.5 117.1 0.4
6–9 6 35.8 35.8 0.0
9–12 6 22.3 22.0 0.3
12–22 6 14.1 14.1 0.0

0–3 8 19.5 19.4 0.1
3–6 8 153.5 151.8 1.7
6–9 8 43.8 43.6 0.2
9–12 8 24.1 24.7 0.6
12–22 8 14.8 14.6 0.2

0–3 9 20.5 20.5 0.0
3–6 9 169.8 170.0 0.2
6–9 9 48.4 49.0 0.6
9–12 9 25.2 26.1 0.9
12–22 9 15.0 15.2 0.2

performance of the empirical copula in interpolating across non-standard maturi-
ties. It even performs reasonably well extrapolating to maturities less than five
years, although we can see the accuracy does start to deteriorate for the three-year
maturity.

4.4. Calibration to market CDO prices

In the second set of tests, we examine whether or not the MinRelEnt copula can be
accurately calibrated to market data. We first attempt to calibrate to each maturity
separately and then to all maturities simulaneously to see how much accuracy is
lost. If the calibration across all maturities is much poorer than the calibration
for a single maturity, then this would suggest that the market does not price the
dependency as static. We also calibrate to the 5 and 10 year maturities, and see
how well these calibrations can match the 7 year prices out-of-sample.

The recovery rate is assumed to be the same as before, but the default rate curve
is now determined from the market index quotes and is assumed to be piecewise
constant between maturities. We also replace the constant risk-free rate used in the
simulation experiment by the market swap curve.
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Table 5. Calibration to iTraxx, each maturity separately.

Thresholds Maturity Bid-ask Market premium MinRel premium Absolute error
(%) (yrs) (bps) (bps) (bps) (bps)

0–3 5 0.5 23.3 24.5 1.2
3–6 5 2.0 68.0 69.6 1.6
6–9 5 2.0 19.0 18.8 0.2
9–12 5 3.0 9.5 8.9 0.6
12–22 5 0.5 4.3 4.1 0.2

0–3 7 0.5 43.1 43.9 0.8
3–6 7 4.0 202.0 203.4 1.4
6–9 7 3.0 46.5 45.5 1.0
9–12 7 2.0 24.0 22.9 1.1
12–22 7 2.0 9.0 7.9 1.1

0–3 10 0.5 54.3 54.3 0.0
3–6 10 10.0 580.0 580.4 0.4
6–9 10 6.0 117.0 117.1 0.1
9–12 10 3.0 51.5 51.6 0.1
12–22 10 2.0 20.0 20.1 0.1

Table 5 shows the calibration results for the iTraxx tranche quotes for 4 April
2006.14 Although not quite as good as the results for the simulated data, we can
see that the calibration errors lie mainly within the bid-ask spreads. Interestingly,
it is again for the junior mezzanine (3,6) tranche where the MinRelEnt copula is
least accurate. Similar performance was achieved for CDX data.

Next we attempted to calibrate to all maturities simultaneously, the results of
which are shown in Table 6. The accuracy is noticeably worse than calibration to

Table 6. Calibration to iTraxx, all maturities simultaneously.

Thresholds Maturity Market premium MinRel premium Absolute error
(%) (yrs) (bps) (bps) (bps)

0–3 5 23.3 21.0 2.3
3–6 5 68.0 71.9 3.9
6–9 5 19.0 25.7 6.7
9–12 5 9.5 14.5 5.0
12–22 5 4.3 7.7 3.4

0–3 7 43.1 43.7 0.6
3–6 7 202.0 208.1 6.1
6–9 7 46.5 53.6 7.1
9–12 7 24.0 27.5 3.5
12–22 7 9.0 12.2 3.2

0–3 10 54.3 56.0 1.7
3–6 10 580.0 590.7 10.3
6–9 10 117.0 127.7 10.7
9–12 10 51.5 54.9 3.4
12–22 10 20.0 22.8 2.8

14Data was kindly supplied by Credit Suisse.
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single maturity data, which suggests that each maturity has a different underying
copula associated with the market tranche quotes. If this is the case then the fitted
MinRelEnt copula is in a sense an “average” of the different underlying copulas.

Notwithstanding the poor fit, we also calibrated the MinRelEnt copula to the 5
and 10 year quotes only and priced 7 year tranches out-of-sample to see how well
it matched market prices. The results are shown in Table 7. Apart from the super
senior tranche — whose predicted premium is double the true value — we can see
that the MinRelEnt copula has the ability to interpolate across maturities to within
reasonable accuracy, even though overall the calibration results were poor.

In order to investigate further the issue of stationarity of the copula, we gen-
erated loss distributions from each of the MinRelEnt copulas calibrated to single
maturity data and compared them visually. The loss distribution is just the prob-
ability distribution of the number of defaults in the portfolio for for a fixed time
horizon.15

Figure 2 shows the 10 year loss distribution generated from the 10 year Min-
RelEnt copula. We include the loss distribution generated from the prior Gaussian
copula for comparison. The implied loss distribution in the upper figure is multi-
modal whereas the loss distribution from the prior Gaussian copula is unimodal. We
can see that the market is pricing the risk of a “catastrophic” event corresponding
to the mode in the 50–60 defaults region.

Table 7. Calibration to 5 and 10 year, and pricing 7 year.

Thresholds Maturity Market premium MinRel premium Absolute error
(%) (yrs) (bps) (bps) (bps)

0–3 5 23.3 21.6 2.7
3–6 5 68.0 71.8 3.8
6–9 5 19.0 24.3 5.3
9–12 5 9.5 13.0 3.5
12–22 5 4.3 6.7 2.4

0–3 7 43.1 42.8 0.3
3–6 7 202.0 216.8 14.8
6–9 7 46.5 53.2 6.7
9–12 7 24.0 25.8 1.8
12–22 7 9.0 18.1 9.1

0–3 10 54.3 55.3 1.0
3–6 10 580.0 597.9 17.9
6–9 10 117.0 132.5 15.4
9–12 10 51.5 52.3 0.8
12–22 10 20.0 19.2 0.8

15That is to say it is the plot of the density function for the random variable given by equation
(1.1) for a fixed time horizon t = T and R = 0.
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Fig. 2. Loss distributions for the 10 year horizon.
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Fig. 3. Implied loss distributions for the 7 year horizon.
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Fig. 4. Implied loss distributions for the 5 year horizon.
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We also generate the 5 and 7 year loss distributions from the 10 year MinRelEnt
copula, and compare them to the 5 year loss distribution generated from the 5 year
MinRelEnt copula and to the 7 year loss distribution generated from the 7 year
MinRelEnt copula. This is shown in Figs. 3 and 4.

We can see some difference between the 7 loss distribution implied from the
10 year MinRelEnt copula and the 7 year loss distribution implied from the 7 year
MinRelEnt copula, especially in the tail region. The difference is more pronounced in
the implied 5 year loss distributions. This suggests that the market view on default
dependence changes according to maturity, but in what way over time requires
further research.

5. Conclusion

In this paper we have introduced a method to determine the minimum relative
entropy copula and applied it to the pricing of CDO tranches. We calibrated the
copula to market data, first by using tranches of only one maturity, and then to
tranches across different maturities. Although we achieved excellent fits to single
maturity data, the fit was noticeably worse for calibration across all maturites.
However, when the same exercise was repeated using “market data” simulated from
a known copula, we achieved a near-perfect fit across all maturities. Furthermore, we
generated loss distributions from the empirical copulas implied from single maturity
data and found that, for the same fixed time horizon, they were quite different
from each other. These two observations suggest that the market view on default
dependence may not be stationary across time.

The advantages of the entropic method are that it provides some justification
for the choice of the copula, provides excellent fits to data and performs well out-
of-sample. The entropic approach also allows us to empirically investigate whether
or not default time dependency remains stationary across time.

There are two main disadvantages however. One is that like most copula meth-
ods it is assumed that when used for pricing, the dependence structure between
default times remains static over time. As we have seen this may not be the case in
reality. The other disadvantage is that both calibration and pricing involves com-
putationally intensive procedures.

The entropic copula method is of course not limited in application to CDO
tranche pricing but can be used wherever dependence is involved, e.g. for basket
options.
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